北大(後期) 数学入試問題2017年03月23日

    
この問題、代ゼミの講評では『難』となっており、河合の講評では『やや難』となっている。一見すると難しい雰囲気だけれど、そんなに難しいはずはないと思って取り組むと、容易に解ける。問題を解くときは『自分はできるのだ』と思って取り組むと、案外易しいことが多い。
    
(1)
a(n)≧0のとき
a(n+1)=a(n)/2+1となるので、a(n+1)≧0が成り立つ。
C≧0のときは、数学的帰納法から、すべてのnに対してa(n)≧0が成り立つ。
また、このとき、a(n)=(1/2)^(n-1)×(C-2)+2となる。
   
(2)
すべてのnに対して、a(n)<0とする。このとき
a(n+1)=(3/2)×a(n)+1 となるので、
a(n)=(3/2)^(n-1)×(C+2)-2となる。
これは、C≦-2の時にa(n)<0となるので、求める答えはC≦-2。
   
(3)
C≧0のとは(1)より、a(n)は収束する。
C=-2のときは(2)より、a(n)は収束する。
C<-2のときは(2)より、a(n)は発散する。
   
ここまでは、普通の練習問題程度の易しい問題でしょう。
-2<C<0の時はどうなるのか。a(n)の符号が一定でないので、とても難しいような気がするかもしれないけれど、北大なのだからそんな難しいはずはないと思って取り組めば簡単です。
試みにC=-1として計算してみよう。
a(1)=-1,a(2)=-1/2,a(3)=1/4,a(4)=9/8・・・となって、以降a(n)>0であることがわかる。
ここまで来れば解答方針は容易だろう。
   
a(N+1)≧0とする。b(n)=a(n+N)とすると、b(n+1)=b(n)-(1/2)|b(n)|+1,b(1)=a(N+1)≧0が成り立つので、
a(n+N)=b(n)=(1/2)^(n-1)×{a(N+1)-2}+2
このため、a(n)は収束する。
(2)より、-2<C<0の時はa(N+1)≧0となる自然数Nが存在するので、よって、a(n)は収束する。
以上より、a(n)が収束するための必要十分条件はC≧-2である。

コメント

コメントをどうぞ

※メールアドレスとURLの入力は必須ではありません。 入力されたメールアドレスは記事に反映されず、ブログの管理者のみが参照できます。

※なお、送られたコメントはブログの管理者が確認するまで公開されません。

名前:
メールアドレス:
URL:
コメント:

トラックバック

* * * * * *

<< 2017/03 >>
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

RSS